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Second Variational Formulae for Dimension Spectra

Michihiro Hirayama1
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Consider basic set for Axiom A diffeomorphism on compact surface. We derive
second variational formulae for the dimension spectra of equilibrium state
on the basic set with respect to the perturbations of both the potential and
the dynamical system. In particular we obtain a second variational formula for
the Hausdorff dimension of the basic set. These results will find their use in the
study of a quadratic extremal problem for multifrcatal analysis.

KEY WORDS: Topological pressure; equilibrium states; thermodynamic formal-
ism; hyperbolic dynamical systems.

1. INTRODUCTION

Several first derivative formulae for topological entropy, measure theo-
retic entropy and Hasudorff dimension are studied when certain hyper-
bolic dynamical system is smoothly perturbed.(7,8) In this note, we derive
second derivative formulae for the dimension spectra, with the aid of
the thermodynamic formalism, when both the dynamical system and the
measure are perturbed. In particular, we derive an explicit second var-
iational formula for the Hausdorff dimension of basic set and that is
given in terms of the measure theoretic entropy and the correlation
function (Theorem 1.1). This is a first step towards a quadratic variational
problem for multifractal formalism.

Let M be a compact Riemannian surface and Diff r (M) the space
of Cr diffeomorphisms of M endowed with the Cr topology. Consider a
parametrized family F ={fη}η∈(−δ,δ) of Cr diffeomorphisms of M for some
r�1 and δ>0. Then, we call F a Cr family if the map

(−δ, δ)�η �→fη ∈Diff r (M)
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is of class Cr . We assume that f = f0 is an Axiom A surface diffeomor-
phism and that �=�0 ⊂M is a basic set for f . (In this paper we always
consider mixing basic sets to argue simply. (see Appendix A).) By struc-
tural stability of hyperbolic set, there exists δ0 ∈ (0, δ] such that for every
η∈ (−δ0, δ0), fη has a basic set �η⊂M and there exists a homeomorphism
hη :�→�η that gives a topological conjugacy; that is fη ◦hη=hη ◦f . See
Lemma 3.1.

For each η∈ (−δ0, δ0) and for every x∈�η, let us define the functions

ψsη(x)= log ‖Dxfη|Esη(x)‖, ψuη (x)=− log ‖Dxfη|Euη (x)‖,

where Esη and Euη are the subbundles associated to the Dfη-invariant
decomposition T�ηM = Esη ⊕ Euη . Put ψs(x)= ψs0(x) and ψu(x)= ψu0 (x),
respectively. Since these stable and unstable distributions Esη(x) and Euη(x)
depend Hölder continuously on x ∈�η, so do the functions ψsη(x) and
ψuη (x). Also let ϕη be a Hölder cotinuous potential on �η. Then the num-
bers T s(η, q) and T u(η, q) are uniquely determined by the equations

Pη(T
s(η, q)ψsη +q(ϕη−Pη(ϕη)))=0

and

Pη(T
u(η, q)ψuη +q(ϕη−Pη(ϕη)))=0,

respectively, where Pη(·)= P�η(fη, ·) denotes the topological pressure of
fη. (see Section 2 for its definition).

We write, for notational simplicity,

V s(η, q) = T s(η, q)ψsη +q(ϕη−Pη(ϕη)),
V u(η, q) = T u(η, q)ψuη +q(ϕη−Pη(ϕη)),
Cµ(ϕ,ψ) =

∑

k∈Z

∫
ϕ

(
ψ ◦f k −

∫
ψdµ

)
dµ.

Put δs =T s(0,0), δu=T u(0,0). Let µs and µu be the unique equilibrium
states on � for V s(0,0) and V u(0,0), respectively.

Theorem 1.1. Let F ={fη}η∈(−δ,δ) be a Cr family of Cr(r�3) diffe-
omorphisms of a compact surface M so that f = f0 is an Axiom A
diffeomorphism and that �=�0 is a basic set for f . Then there exists
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δ1 ∈ (0, δ0] such that the Hausdorff dimension dimH �η is of class Cr−2 in
η∈ (−δ1, δ1). Furthermore

d2

dη2

∣∣∣
η=0

dimH �η=− 1
{∫ ψsdµs}2

δs T̃ s − 1
{∫ ψudµu}2

δuT̃ u, (1.1)

where

T̃ τ = Aτ
∫
ψτdµτ −Bτ

∫
d

dη

∣∣∣
η=0

ψτη ◦hη dµτ −
{∫

d

dη

∣∣∣
η=0

ψτη ◦hη dµτ
}2

,

Aτ =
∫

d2

dη2

∣∣∣
η=0

ψτη ◦hη dµτ +Cµτ
(
d

dη

∣∣∣
η=0

ψτη ◦hη, d
dη

∣∣∣
η=0

V τ (η,0)
)
,

Bτ =
∫

d

dη

∣∣∣
η=0

ψτη ◦hη dµτ +Cµτ
(
ψτ ,

d

dη

∣∣∣
η=0

V τ (η,0)
)
, (τ = s, u).

Theorem 1.1 is a particular case of more general formula established
in Section 4 where, indeed, given a parametrized family {ϕη,ρ}ρ of Hölder
potentials on �η we consider how do the associated numbers T s(η, ρ, q)
and T u(η, ρ, q) vary with respect both to η and ρ. (See Sections 3 and
5 also). In ref. 1 Section 3.3, Barreira considered similar problem but the
argument is not clear.

From (1.1) it is easy to see that if η0 ∈ (−δ1, δ1) is an inflection point
of ψτη ◦hη, then, so is of dimH �η.

Since − ∫ ψτdµτ =hµτ (f ) (τ = s, u), the Eq. (1.1) can be rewrite as

d2

dη2

∣∣∣
η=0

dimH �η=− 1
hµs (f )2

δs T̃ s − 1
hµu(f )2

δuT̃ u,

where hν(f ) denotes the measure theoretic entropy of f with respect to ν.
The paper is organaized as follows. Section 2 gives the definition

and necessary properties of the topological pressure. Sections 3 and 4 are
devoted to the proof of the results. In Section 5 the remaining variational
formulae of the dimension spectra and also some identities on the spectra
(Corollary 5.5) are stated. Section 6 gives necessary notions of the hyper-
bolic dynamical systems in short.

2. PROPERTIES OF PRESSURE

Let X be a compact metric space. We say that a function ϕ :X→R

is Hölder continuous with exponents α, or simply α-Hölder continuous,
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0<α�1, if

|ϕ(x)−ϕ(y)|�Cd(x, y)α (x, y ∈X)

for some constant C>0. Denote the set of all α-Hölder continuous func-
tions on X by Cα(X). We shall consider Cα(X) endowed with the norm
‖ · ‖α given by

‖ϕ‖α = sup
x

|ϕ(x)|+ sup
x 	=y

|ϕ(x)−ϕ(y)|
d(x, y)α

.

Also C(X) denotes the space of continuous functions, and let f :X→X

be a homeomorphism. We briefly recall several known facts of topologi-
cal pressure. (See refs. 2 and 6 for more precise details).

In this paper the topological pressure PX(f, ·) : C(X) → R shall be
defined via., the variational principle

PX(f,ϕ)= sup
µ

{
hµ(f )+

∫
ϕ dµ

}
,

where the supremum is taken over all f -invariant Borel probability mea-
sures on X.

(1) Let Xi be a compact metric space fi :Xi→Xi a homeomorphism,
i=1,2. Suppose f1 :X1 →X1 and f2 :X2 →X2 are topologically conjugate
via., a homeomorphism h :X1 →X2; that is, h◦f1 =f2 ◦h. Then

PX1(f1, ϕ ◦h)=PX2(f2, ϕ), ϕ ∈C(X2).

A measure µ is called equilibrium state for ϕ if PX(f,ϕ)=hµ(f )+
∫
ϕ dµ.

(2) Let � be a basic set for Axiom A diffeomorphism f of a com-
pact manifold.

(i) Let ϕ a Hölder continuous function on �. Then there is a unique
equilibrium state on � for ϕ which we denote by µϕ .

(ii) For every α∈ (0,1), PX(f, ·) :Cα(�)→R is real analytic function.

(iii) Let ξ, ϕ,ψ ∈Cα(�), α∈ (0,1). Then

∂2

∂η1∂η2

∣∣∣ η1=0
η2=0

PX(f, ξ +η1ϕ+η2ψ)=Cµξ (ϕ,ψ).
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(iv) For every α∈ (0,1), µ· :Cα(�)→Cα(�)∗ is real analytic function.

3. PRELIMINARIES

Lemma 3.1. (ref. 3). If � is a basic set for f ∈Diff r (M), r�3, then
there exist δ0>0, α∈ (0,1), and a Cr−1 map

(−δ0, δ0)�η �→hη ∈Cα(�,M),

satisfying the following:

(1) hη :�→�η gives a topological conjugacy, where �η is a basic set
for fη.

(2) The map (−δ0, δ0)�η �→ψτη ◦hη∈Cα(�) is of class Cr−2 (τ =s, u).

For every η∈ (−δ0, δ0), let �η={ϕη,ρ}ρ∈(−γ,γ ) be a parametrized fam-
ily of α-Hölder potentials on �η for some γ >0. We say that �η is a Ck

family if the map

(−γ, γ )�ρ �→ϕη,ρ ∈Cα(�η)

is of class Ck for k�1.
For Cr family F and �={�η}η, where each �η is Ck family, we call

the pair (F,�) a Cr proper if the map

(−δ, δ)�η �→ϕη,ρ ∈Cα(M)

is of class Cr .

Put �sη=ψsη ◦hη, and �uη =ψuη ◦hη, respectively.

Remark 3.2. It follows from Lemma 3.1 that the pairs of perturba-
tions (F,�s) and (F,�u) are Cr−2 proper if � is a basic set for f ∈
Diff r (M), r�3.

Let ψsη and ψuη be the Hölder continuous functions defined in
Section 1. Then the numbers T s(η, ρ, q) and T u(η, ρ, q) are uniquely
determined by the equations

Pη(T
s(η, ρ, q)ψsη +q(ϕη,ρ −Pη(ϕη,ρ)))=0
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and

Pη(T
u(η, ρ, q)ψuη +q(ϕη,ρ −Pη(ϕη,ρ)))=0,

respectively.
In what follows we write, for notational simplicity

V s(η, ρ, q) = T s(η, ρ, q)ψsη +q(ϕη,ρ −Pη(ϕη,ρ)),
V u(η, ρ, q) = T u(η, ρ, q)ψuη +q(ϕη,ρ −Pη(ϕη,ρ)),
ξ�(η, ρ) = ϕη,ρ ◦hη−P(ϕη,ρ ◦hη),
ξ�η(η, ρ) = ϕη,ρ −Pη(ϕη,ρ),

µ(g) =
∫
gdµ.

Let µs0,ρ and µu0,ρ be the unique equilibrium states on � for V s(0, ρ, q)
and V u(0, ρ, q), respectively. Next lemma describes the derivative formula
for the perturbation of the dynamical system.

Lemma 3.3. Let F ={fη}η∈(−δ,δ) be a Cr family of Cr(r� 3) diffeo-
morphisms of a compact surface M so that f = f0 is an Axiom A diffe-
omorphism and that �=�0 is a basic set for f . Suppose (−δ0, δ0)�η �→
ϕη,ρ is of class Ck(k� r−2). Then there exists δ1 ∈ (0, δ0] such that T s and
T u are of class Cr−2 in η∈ (−δ1, δ1). Furthermore

∂

∂η

∣∣∣
η=0

T τ (η, ρ, q)

= − 1
µτ0,ρ(�

τ
0 )

{
T τ (0, ρ, q)µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)
+qµτ0,ρ

(
∂

∂η

∣∣∣
η=0

ξ�(η, ρ)

)}

for every q ∈R (τ = s, u).
Let µs

η,0 and µu
η,0 be the unique equilibrium states on �η for

V s(η,0, q) and V u(η,0, q), respectively. Next lemma describes the deriva-
tive formula for the perturbation of the potential.

Lemma 3.4. Let �η be a basic set for fη ∈ Diff r (M) and �η =
{ϕη,ρ}ρ∈(−γ,γ ) a Ck(k� 1) family of Hölder continuous potentials on �η
for fη. Then there exists γ1 ∈ (0, γ ] such that T s and T u are of class Ck in
ρ ∈ (−γ1, γ1). Furthermore

∂

∂ρ

∣∣∣
ρ=0

T τ (η, ρ, q)=− q

µτ
η,0(ψ

τ
η )
µτη,0

(
∂

∂ρ

∣∣∣
ρ=0

ξ�η(η, ρ)

)

for every q ∈R (τ = s, u).
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These two lemmata can be easily deduced from the argument in refs.
1 and 8 with slight modification and hence we omit the proofs.

Lemma 3.5. Let X be a compact metric space and ξ, ϕ ∈ Cα(X).
Suppose t �→µt is continuous. Then

d

dη

∣∣∣
η=0

µξ+ηϕ(ξ +ηϕ)=µξ (ϕ)+Cµξ (ξ, ϕ).

Proof. Let us denote

I (ξ, ϕ)=µξ (ϕ)+Cµξ (ξ, ϕ).

Clearly

µξ (ξ +ηϕ)−µξ (ξ)
η

=µξ (ϕ).

We know

µξ+ηϕ(ξ)−µξ (ξ)
η

=Cµξ (ξ, ϕ)+o(η),

as η→0. (see ref. 6; chapter 7 or ref. 7; Section 3). Henceforce

∣∣∣∣
µξ+ηϕ(ξ +ηϕ)−µξ (ξ)

η
− I (ξ, ϕ)

∣∣∣∣

=
∣∣∣∣
µξ+ηϕ(ξ +ηϕ)−µξ (ξ +ηϕ)

η
+ µξ (ξ +ηϕ)−µξ (ξ)

η
− I (ξ, ϕ)

∣∣∣∣

�
∣∣∣∣
µξ+ηϕ(ξ)−µξ (ξ)

η
−Cµξ (ξ, ϕ)

∣∣∣∣+
∣∣∣∣
µξ+ηϕ(ηϕ)−µξ (ηϕ)

η

∣∣∣∣

� |η|‖ϕ‖2 +o(η),

as η→0. Thereby, the lemma proved.

Lemma 3.6. Let X be a compact metric space and ξ, ϕη ∈ Cα(X).
Suppose η �→ϕη and t �→µt are both continuous. Then,

d

dη

∣∣∣
η=0

µξ+ηϕη (ξ +ηϕη)=µξ (ϕ0)+Cµξ (ξ, ϕ0).
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Proof. Let

I (ξ, ϕ0)=µξ (ϕ0)+Cµξ (ξ, ϕ0).

Then, by the previous lemma

∣∣∣∣
µξ+ηϕ0(ξ +ηϕ0)−µξ (ξ)

η
− I (ξ, ϕ0)

∣∣∣∣�o(η),

as η→0. Furthermore,

∣∣∣∣
µξ+ηϕη (ξ +ηϕη)−µξ+ηϕ0(ξ +ηϕ0)

η

∣∣∣∣

�
∣∣∣∣
µξ+ηϕη (ξ +ηϕη)−µξ+ηϕη (ξ +ηϕ0)

η

∣∣∣∣

+
∣∣∣∣
µξ+ηϕη (ξ +ηϕ0)−µξ+ηϕ0(ξ +ηϕ0)

η

∣∣∣∣
� ‖ϕη−ϕ0‖+‖ξ +ηϕ0‖ · ‖ϕη−ϕ0‖.

In view of the considerations above

∣∣∣∣
µξ+ηϕη (ξ +ηϕη)−µξ (ξ)

η
− I (ξ, ϕ0)

∣∣∣∣

�
∣∣∣∣
µξ+ηϕη (ξ +ηϕη)−µξ+ηϕ0(ξ +ηϕ0)

η

∣∣∣∣

+
∣∣∣∣
µξ+ηϕ0(ξ +ηϕ0)−µξ (ξ)

η
− I (ξ, ϕ0)

∣∣∣∣
� ‖ϕη−ϕ0‖+‖ξ +ηϕ0‖ · ‖ϕη−ϕ0‖+o(η)
� |η|(1+‖ξ +ηϕ0‖)+o(η)

as η→0, thereby completing the proof of Lemma 3.6.

4. PROOFS

Proposition 4.1. Suppose that the same assumption of Lemma 3.3
holds for r � 4. Then there exists δ1 ∈ (0, δ0] such that T s and T u are of
class Cr−2 in η∈ (−δ1, δ1). Furthermore
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∂2

∂η2

∣∣∣
η=0

T τ (η, ρ, q) = − q

µτ0,ρ(ψ
τ )2

{µτ0,ρ(ψτ )T̃ τ1 (ρ, q)− T̃ τ2 (ρ, q)}

−T
τ (0, ρ, q)
µτ0,ρ(ψ

τ )2
T̃ τ3 (ρ, q),

where

T̃ τ1 (ρ, q) = µτ0,ρ

(
∂2

∂η2

∣∣∣
η=0

ξ�(η, ρ)

)

+Cµ0,ρ

(
∂

∂η

∣∣∣
η=0

ξ�(η, ρ),
∂

∂η

∣∣∣
η=0

V τ (η, ρ, q)

)
,

T̃ τ2 (ρ, q) = µτ0,ρ

(
∂

∂η

∣∣∣
η=0

ξ�(η, ρ)

){
µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)
+Bτ (ρ, q)

}
,

T̃ τ3 (ρ, q) = Aτ (ρ, q)µτ0,ρ(ψ
τ )−Bτ (ρ, q)µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)

−µτ0,ρ
(
d

dη

∣∣∣
η=0

�τη

)2

,

Aτ (ρ, q) = µτ0,ρ

(
d2

dη2

∣∣∣
η=0

�τη

)
+Cµτ0,ρ

(
d

dη

∣∣∣
η=0

�τη ,
∂

∂η

∣∣∣
η=0

V τ (η, ρ, q)

)
,

Bτ (ρ, q) = µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)
+Cµτ0,ρ

(
ψτ ,

∂

∂η

∣∣∣
η=0

V τ (η, ρ, q)

)

for every q ∈R (τ = s, u).

Proof. It follows from Lemmas 3.3 and 3.6 that:

−µτ0,ρ(�τ0 )2
∂2

∂η2

∣∣∣
η=0

T τ (η, ρ, q)

=
{
∂

∂η

∣∣∣
η=0

T τ (η, ρ, q)µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)

+T τ (0, ρ, q)
{
µτ0,ρ

(
d2

dη2

∣∣∣
η=0

�τη

)

+Cµτ0,ρ
(
d

dη

∣∣∣
η=0

�τη ,
∂

∂η

∣∣∣
η=0

V τ (η, ρ, q)

)}

+q
(
µτ0,ρ

(
∂2

∂η2

∣∣∣
η=0

ξ�(η, ρ)

)



112 Hirayama

+Cµτ0,ρ
(
∂

∂η

∣∣∣
η=0

ξ�(η, ρ),
∂

∂η

∣∣∣
η=0

V τ (η, ρ, q)

))}

×µτ0,ρ(�τ0 )−
{
T τ (0, ρ, q)µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)
+qµτ0,ρ

(
∂

∂η

∣∣∣
η=0

ξ�(η, ρ)

)}

×
{
µτ0,ρ

(
d

dη

∣∣∣
η=0

�τη

)
+Cµτ0,ρ

(
�τ0 ,

∂

∂η

∣∣∣
η=0

V τ (η, ρ, q)

)}
.

Applying Lemma 3.3 again will complete the proof of Proposition 4.1
(note �τ0 =ψτ0 =ψτ ).

Proposition 4.2. Suppose that the same assumption of Lemma 3.4
holds for k� 2. Then there exists γ1 ∈ (0, γ ] such that T s and T u are of
class Ck in ρ ∈ (−γ1, γ1). Furthermore

∂2

∂ρ2

∣∣∣
ρ=0

T τ (η, ρ, q)=− q

µτ
η,0(ψ

τ
η )

2
{µτη,0(ψτη )T̃ τ4 (η, q)− T̃ τ5 (η, q)},

where

T̃ τ4 (η, q) = µτη,0

(
∂2

∂ρ2

∣∣∣
ρ=0

ξ�η(η, ρ)

)

+Cµτ
η,0

(
∂

∂ρ

∣∣∣
ρ=0

ξ�η(η, ρ),
∂

∂ρ

∣∣∣
ρ=0

V τ (η, ρ, q)

)
,

T̃ τ5 (η, q) = µτη,0

(
∂

∂ρ

∣∣∣
ρ=0

ξ�η(η, ρ)

)
Cµτ

η,0

(
ψτη ,

∂

∂ρ

∣∣∣
ρ=0

V τ (η, ρ, q)

)

for every q ∈R (τ = s, u).
Proof. It follows from Lemmas 3.4 and 3.6 that

−
µτ
η,0(ψ

τ
η )

2

q

∂2

∂ρ2

∣∣∣
ρ=0

T τ (η, ρ, q)

=
{
µτη,0

(
∂2

∂ρ2

∣∣∣
ρ=0

ξ�η(η, ρ)

)

+Cµτ
η,0

(
∂

∂ρ

∣∣∣
ρ=0

ξ�η(η, ρ),
∂

∂ρ

∣∣∣
ρ=0

V τ (η, ρ, q)

)}

×µτη,0(ψτη )−µτη,0
(
∂

∂ρ

∣∣∣
ρ=0

ξ�η(η, ρ)

)
Cµτ

η,0

(
ψτη ,

∂

∂ρ

∣∣∣
ρ=0

V τ (η, ρ, q)

)
.

Thus Proposition 4.2 is obtained.
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Denote the local stable and unstable manifolds for fη by Ws
η(x) and

Wu
η (x), respectively. Put Ws(x)=Ws

0(x) and Wu(x)=Wu
0 (x). (see Section

Appendix A for its definitions).

Proposition 4.3. (refs. 4 and 5) Let f be a C1 Axiom A surface
diffeomorphism. Then the following hold:

(i) dimH Ws(x)∩�= δs, dimH Wu(x)∩�= δu (x ∈�),
(ii) dimH �= δs + δu.

Proposition 4.4. (refs. 3 and 5) Let F = {fη}η∈(−δ,δ) be a Cr(r � 3)
family of Cr diffeomorphisms of a compact surface M so that f = f0 is
an Axiom A diffeomorphism and that �=�0 is a basic set for f . Then
the functions

(−δ1, δ1)�η �→dimH Ws
η(x)∩�η,

(−δ1, δ1)�η �→dimH Wu
η (x)∩�η

are independent of x ∈� and are of class Cr−2.

Proof of Theorem 1.1. By setting q = 0 in Proposition 4.1 and
combining Propositions 4.3 and 4.4 we obtain Theorem 4.1.

5. OTHER VARIATIONAL FORMULAE

Assumption (A). Let F ={fη}η∈(−δ,δ) be a Cr(r�3) family of Cr diffe-
omorphisms of a compact surface M so that f =f0 is an Axiom A diffe-
omorphism and that �=�0 is a basic set for f , and �η ={ϕη,ρ}ρ∈(−γ,γ )
a Ck(k � 1) family of Hölder continuous potentials on the basic set �η
for fη, η∈ (−δ0, δ0) for some δ0 ∈ (0, δ]. Suppose the pair (F, {�η}η) is Cr

proper.

Theorem 5.1. Suppose that the Assumption (A) holds. Then there
exist δ1 ∈ (0, δ0], and γ1 ∈ (0, γ ] such that the functions T s and T u are of
class Cr−2 in η∈ (−δ1, δ1), and that are of class Ck in ρ ∈ (−γ1, γ1), and
that are real analytic in q ∈R.

Proof. Obviously Theorem 5.1 can be proved by each first ststement
of Lemmata 3.3 and 3.4.

Let µsq and µuq be the equilibrium states on � for V s(0,0, q) and
V u(0,0, q), respectively. Furthermore the following formulae hold.
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Proposition 5.2. Let τ = s, u. Suppose that the assumption (A)
holds. Then we have the following:

∂2

∂η∂ρ

∣∣∣
η=0
ρ=0

T τ (η, ρ, q) = ∂

∂ρ

∣∣∣
ρ=0

(
∂

∂η

∣∣∣
η=0

T τ (η, ρ, q)

)

= − q

µτq(ψ
τ )2

{µτq(ψτ )T τ1 (q)−T τ2 (q)}

−T
τ (0,0, q)
µτq(ψ

τ )2
T τ3 (q), (5.1)

where

T τ1 (q) = µτq

(
∂2

∂η∂ρ

∣∣∣
η=0
ρ=0

ξ�(η, ρ)

)

+Cµτq
(
∂

∂η

∣∣∣
η=0

ξ�(η,0),
∂

∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
)
,

T τ2 (q) = µτq

(
∂

∂ρ

∣∣∣
ρ=0

ξ�(0, ρ)
)
µτq

(
d

dη

∣∣∣
η=0

ψτη ◦hη
)

+µτq
(
∂

∂η

∣∣∣
η=0

ξ�(η,0)
)
Cµτq

(
ψτ ,

∂

∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
)
,

T τ3 (q) = µτq(ψ
τ )Cµτ0

(
d

dη

∣∣∣
η=0

ψτη ◦hη, ∂
∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
)

−µτq
(
d

dη

∣∣∣
η=0

ψτη ◦hη
)
Cµτq

(
ψτ ,

∂

∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
)

for every q ∈R.

Proof. It follows from Lemmas 3.3 and 3.6 that:

−µτq(�τ0 )2
∂

∂ρ

∣∣∣
ρ=0

(
∂

∂η

∣∣∣
η=0

T τ (η, ρ, q)

)

=
{
∂

∂ρ

∣∣∣
ρ=0

T τ (0, ρ, q)µτq

(
d

dη

∣∣∣
η=0

�τη

)

+T τ (0,0, q)Cµτq
(
d

dη

∣∣∣
η=0

�τη ,
∂

∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
)

+q
(
µτq

(
∂2

∂η∂ρ

∣∣∣
η=0
ρ=0

ξ�(η, ρ)

)

+Cµτq
(
∂

∂η

∣∣∣
η=0

ξ�(η,0),
∂

∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
))}
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×µτq(�τ0 )−
{
T τ (0,0, q)µτq

(
d

dη

∣∣∣
η=0

�τη

)
+qµτq

(
∂

∂η

∣∣∣
η=0

ξ�(η,0)
)}

×Cµτq
(
�τ0 ,

∂

∂ρ

∣∣∣
ρ=0

V τ (0, ρ, q)
)
.

Combining Lemma 3.4 for η=0 will complete the proof of Proposition 5.2
(note �τ0 =ψτ0 =ψτ ).

Proposition 5.3. Let τ = s, u. Suppose that the Assumption (A)
holds. Then we have the following:

∂2

∂ρ∂η

∣∣∣
ρ=0
η=0

T τ (η, ρ, q) = ∂

∂η

∣∣∣
η=0

(
∂

∂ρ

∣∣∣
ρ=0

T τ (η, ρ, q)

)

= − q

µτq(ψ
τ )2

{µτq(ψτ )T τ4 (q)−T τ5 (q)}, (5.2)

where

T τ4 (q) = µτq

(
∂2

∂ρ∂η

∣∣∣
ρ=0
η=0

ξ�η(η, ρ)

)

+Cµτq
(
∂

∂ρ

∣∣∣
ρ=0

ξ�(0, ρ),
∂

∂η

∣∣∣
η=0

V τ (η,0, q)
)
,

T τ5 (q) = µτq

(
∂

∂ρ

∣∣∣
ρ=0

ξ�(0, ρ)
){

µτq

(
d

dη

∣∣∣
η=0

ψτη

)

+Cµτq
(
ψτ0 ,

∂

∂η

∣∣∣
η=0

V τ (η,0, q)
)}

for every q ∈R.

Proof. Using Lemmas 3.4 and 3.6 shall imply that

−µ
τ
q(ψ

τ
0 )

2

q

∂

∂η

∣∣∣
η=0

(
∂

∂ρ

∣∣∣
ρ=0

T τ (η, ρ, q)

)

=
{
µτq

(
∂2

∂ρ∂η

∣∣∣
ρ=0
η=0

ξ�η(η, ρ)

)

+Cµτq
(
∂

∂ρ

∣∣∣
ρ=0

ξ�0(0, ρ),
∂

∂η

∣∣∣
η=0

V τ (η,0, q)
)}

µτq(ψ
τ
0 )

−µτq
(
∂

∂ρ

∣∣∣
ρ=0

ξ�0(0, ρ)
){

µτq

(
d

dη

∣∣∣
η=0

ψτη

)

+Cµτq
(
ψτ0 ,

∂

∂η

∣∣∣
η=0

V τ (η,0, q)
)}

.
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Thus Proposition 5.3 is obtained (note ξ�0(0, ρ)= ξ�(0, ρ) ).

Remark 5.4. If r � 4 and k� 2, then the derivatives (5.1) and (5.2)
are coincide, respectively, for every q ∈R.

Suppose r�4 and k�2. Then by Remark 5.4 setting q=0, in partic-
ular, implies

δτ T τ3 (0)=0 (τ = s, u),

since µτ0(ψ
τ ) 	= 0 (note that T τ (0,0,0) coincides δτ defined in Section 1).

Hence (i) T s3 (0)= T u3 (0)= 0, or (ii) δs = δu = 0 might occur. By using the
Young formula,(9) we can easily conclude that δs = δu = 0 if and only if
hµs0

(f )= hµu0 (f )= 0. We know, however, that hµτ0 (f )= −µτ0(ψτ ) 	= 0, and
hence case (ii) does not occur.

Next setting q=1 implies

µτ1(ψ
τ ){T τ1 (1)−T τ4 (1)}=T τ2 (1)−T τ5 (1) (τ = s, u),

since T τ (0,0,1)=0.
Hence we summarize as follows.

Corollary 5.5. Let τ = s, u. Suppose that the Assumption (A) holds
for r � 4 and k� 2. Then we have T τ3 (0)= 0. Furthermore following (1),
or (2) hold.

(1) T τ1 (1)=T τ4 (1) (equivalently T τ2 (1)=T τ5 (1))
(2) hµτ1

(f )=−{T τ2 (1)−T τ5 (1)}/{T τ1 (1)−T τ4 (1)}.

APPENDIX A

Let f :M→M be a C1+α(α>0) diffeomorphism. A compact f -invari-
ant set �⊂M is said to be hyperbolic if there exists2 a continuous split-
ting of the tangent bundle T�M =Es ⊕Eu and constants C > 0 and λ∈
(0,1) such that for every x ∈�,

(a) Dxf (E
s(x))=Es(f x) and Dxf (E

u(x))=Eu(f x),
(b) for every n�0, we have for all v∈Es(x)

‖Dxf n(v)‖�Cλn‖v‖
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for all v∈Eu(x)

‖Dxf−n(v)‖�Cλn‖v‖

The subspaces Es(x) and Eu(x) depend Hölder continuously on x ∈�.

Now let � be a hyperbolic set for f . If there exists an open neight-
borhood O of � such that

�=
⋂

i∈Z

f i(Ō),

then we say �=�f a basic set or locally maximal set for f . A diffeomor-
phism f :M→M is said be Axiom A if its non-wandering set �(f ) is a
locally maximal hyperbolic set.

Let x ∈�(f ). We define the local stable and unstable manifolds for f
as

Ws(x) ={y ∈M;d(f nx, f ny)� ε (n�0)},
Wu(x) ={y ∈M;d(f−nx, f−ny)� ε (n�0)}

for some ε>0. Then they satisfy

TxWs(x)=Es(x), TxWs(x)=Es(x).

By the Smale spectral decomposition theorem, the set �(f ) can be
decomposed into finitely many pairwise disjoint closed f -invariant locally
maximal hyperbolic sets, say �i , such that f |�i :�i →�i is topologically
transitive. Furthermore, for each i there exists a integer ni and pairwise
disjoint closed sets �i,j such that f (�i,j )=�i,j+1 (�i,ni+1 =�1,i ) and
f ni |�i,j :�i,j →�i,j is topologically mixing. We refer the reader to refs. 2
and 6 for more precise details.
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